skip to main content


Search for: All records

Creators/Authors contains: "Li, Kun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Under low-potassium (K+) stress, a Ca2+signaling network consisting of calcineurin B-like proteins (CBLs) and CBL-interacting kinases (CIPKs) play essential roles. Specifically, the plasma membrane CBL1/9-CIPK pathway and the tonoplast CBL2/3-CIPK pathway promotes K+uptake and remobilization, respectively, by activating a series of K+channels. While the dual CBL-CIPK pathways enable plants to cope with low-K+stress, little is known about the early events that link external K+levels to the CBL-CIPK proteins. Here we show that K+status regulates the protein abundance and phosphorylation of the CBL-CIPK-channel modules. Further analysis revealed low K+-induced activation of VM-CBL2/3 happened earlier and was required for full activation of PM-CBL1/9 pathway. Moreover, we identified CIPK9/23 kinases to be responsible for phosphorylation of CBL1/9/2/3 in plant response to low-K+stress and the HAB1/ABI1/ABI2/PP2CA phosphatases to be responsible for CBL2/3-CIPK9 dephosphorylation upon K+-repletion. Further genetic analysis showed that HAB1/ABI1/ABI2/PP2CA phosphatases are negative regulators for plant growth under low-K+, countering the CBL-CIPK network in plant response and adaptation to low-K+stress.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Potassium (K) is an essential macronutrient for plant growth, and its availability in the soil varies widely, requiring plants to respond and adapt to the changing K nutrient status. We show here that plant growth rate is closely correlated with K status in the medium, and this K-dependent growth is mediated by the highly conserved nutrient sensor, target of rapamycin (TOR). Further study connected the TOR complex (TORC) pathway with a low-K response signaling network consisting of calcineurin B-like proteins (CBL) and CBL-interacting kinases (CIPK). Under high K conditions, TORC is rapidly activated and shut down the CBL–CIPK low-K response pathway through regulatory-associated protein of TOR (RAPTOR)–CIPK interaction. In contrast, low-K status activates CBL–CIPK modules that in turn inhibit TORC by phosphorylating RAPTOR, leading to dissociation and thus inactivation of the TORC. The reciprocal regulation of the TORC and CBL–CIPK modules orchestrates plant response and adaptation to K nutrient status in the environment.

     
    more » « less
    Free, publicly-accessible full text available November 21, 2024
  3. Highly doped semiconductor “designer metals” have been shown to serve as high-quality plasmonic materials across much of the long-wavelength portion of the mid-infrared. These plasmonic materials benefit from a technologically mature semiconductor fabrication infrastructure and the potential for monolithic integration with electronic and photonic devices. However, accessing the short-wavelength side of the mid-infrared is a challenge for these designer metals. In this work we study the perspectives for extending the plasmonic response of doped semiconductors to shorter wavelengths by leveraging charge confinement, in addition to doping. We demonstrate, theoretically and experimentally, negative permittivity across the technologically vital mid-wave infrared (3–5 μ<#comment/>m) frequency range. The semiconductor composites presented in our work offer an ideal material platform for monolithic integration with a variety of semiconductor optoelectronic devices operating in the mid-wave infrared.

     
    more » « less
  4. Abstract

    Viruses come in various shapes and sizes, and understanding their morphology is central to understanding their activity and function. The need for fast recognition and real‐time fingerprinting methods for pathogenic viruses is a critical bottleneck in implementing many diagnostic and therapeutic techniques. In this work, nanopore tomography (NT) is implemented for fast measurements of the characteristic dimensions of viruses and the optimal operating conditions are explored. Using a small filamentous bacteriophage as a model, it is demonstrated that NT can detect geometrical features in a few‐nanometer regime, with high throughput and accuracy, in aqueous conditions. The instrumental parameters are optimized to obtain virus diameter measurements that are robust to the uncertainties of the external parameters. Furthermore, NT is critically compared to various single‐particle imaging techniques, with a particular emphasis on emerging helium ion microscopy (HIM). It is shown that, with proper operating procedures, HIM can reach a nanometer‐scale resolution in viral metrology, while retaining a high throughput second only to NT. The high throughput of both techniques can foster sufficient statistics for a precise exploration of viral heterogeneity.

     
    more » « less
  5. Abstract Key message

    We discovered a naturalFT-A2allele that increases grain number per spike in both pasta and bread wheat with limited effect on heading time.

    Abstract

    Increases in wheat grain yield are necessary to meet future global food demands. A previous study showed that loss-of-function mutations inFLOWERING LOCUS T2(FT2) increase spikelet number per spike (SNS), an important grain yield component. However, these mutations were also associated with reduced fertility, offsetting the beneficial effect of the increases in SNS on grain number. Here, we report a natural mutation resulting in an aspartic acid to alanine change at position 10 (D10A) associated with significant increases in SNS and no negative effects on fertility. Using a high-density genetic map, we delimited the SNS candidate region to a 5.2-Mb region on chromosome 3AS including 28 genes. Among them, onlyFT-A2showed a non-synonymous polymorphism (D10A) present in two different populations segregating for the SNS QTL on chromosome arm 3AS. These results, together with the known effect of theft-A2mutations on SNS, suggest that variation inFT-A2is the most likely cause of the observed differences in SNS. We validated the positive effects of the A10 allele on SNS, grain number, and grain yield per spike in near-isogenic tetraploid wheat lines and in an hexaploid winter wheat population. The A10 allele is present at very low frequency in durum wheat and at much higher frequency in hexaploid wheat, particularly in winter and fall-planted spring varieties. These results suggest that theFT-A2A10 allele may be particularly useful for improving grain yield in durum wheat and fall-planted common wheat varieties.

     
    more » « less
  6. We report the theoretical prediction and experimental realization of the optical phenomenon of “ballistic resonance.” This resonance, resulting from the interplay between free charge motion in confining geometries and periodic driving electromagnetic fields, can be utilized to achieve negative permittivity at frequencies well above the bulk plasma frequency. As a proof of principle, we demonstrate all-semiconductor hyperbolic metamaterials operating at frequencies 60% above the plasma frequency of the constituent doped semiconductor “metallic” layer. Ballistic resonance will therefore enable the realization and deployment of various applications that rely on local field enhancement and emission modulation, typically associated with plasmonic materials, in new materials platforms.

     
    more » « less